UNIVERSITY OF MUMBAI

Revised Syllabus

For

Master of Computer Applications: MCA

Semester I and II

Under

FACULTY OF TECHNOLOGY

(As per Choice Based Credit and Grading System)

From,

Academic Year 2016-17

From Co-ordinator's Desk:

To meet the challenge of ensuring excellence in Master Program in Computer Applications (M.C.A.: referred as Master of Computer Applications) education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of Master of Computer Applications (MCA) education.

Semester based Credit and Grading system enables a much required shift in focus from teacher centric to learner centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Choice Based Credit and Grading System is implemented for First Year of Master of Computer Applications (M.C.A.) from the academic year 20162017. Subsequently this system will be carried forward for Second Year and Third Year of M.C.A. in the academic years 2017 2018 and 20182019 respectively.

Dr. S. K. Ukarande

Co-ordinator,
Faculty of Technology,
Member Academic Council
University of Mumbai, Mumbai

Preamble:

It is a privilege to present the revised Choice Based Grading and Credit System(CBGCS)

syllabus of Master of Computer Applications (M.C.A.) for Sem I and Sem II (effective from year

2016-17) with inclusion of outcome based approach and project based learning. The syllabus is

designed keeping in view the requirements of Industry. The basic objective of the syllabus is to

equip the students with the necessary knowledge, skills and foundation required for Application

development.

Since the M.C.A. programme is inclined more towards Application Development and thus has

more emphasis on latest programming languages and tools to develop better and faster

applications using integrated approach. For this, the integrated lab concepts like mini-projects are

introduced in Sem I and Sem II. The syllabus of Sem I and Sem II include the combination of

various subject in the area of Business Management, Mathematics and Information Technology.

Dr.Dhananjay R.Kalbande

Chairman- Ad-hoc Board of Studies of Computer Application,

Member- Academic Council,

University of Mumbai, Mumbai.

Program Structure for Master of Computer Application (MCA) Mumbai University (With Effect from 2016-2017) Semester I

Subject Code	Subject Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
MCA101	Object Oriented Programming	04	-		04			04	
MCA102	Software Engineering & Project Management	04			04			04	
MCA103	Computer Organization and Architecture	04	-1		04			04	
MCA104	IT in Management	04			04			04	
MCA105	Statistics and Probability	04			04			04	
MCAL101	Lab I – SEPM and OOP Lab		06			03		03	
MCAL102	Lab II – Web Technologies and Mini Project-Lab		06			03		03	
	Total	20	12		20	06		26	

Subject Subject Name		Examination Scheme									
Code	Subject Name		Theory	y Course		Term					
			nal Assess	ment	End Sem.	Work	Pract.	Oral	Total		
		Test1	Test 2	Avg.	Exam.	WUIK					
MCA101	Object Oriented Programming	20	20	20	80	1			100		
MCA102	Software Engineering & Project Management	20	20	20	80	1			100		
MCA103	Computer Organization and Architecture	20	20	20	80				100		
MCA104	IT in Management	20	20	20	80				100		
MCA105	Statistics and Probability	20	20	20	80				100		
MCAL101	Lab I – SEPM and OOP Lab			-		25	50	25	100		
MCAL102	Lab II – Web Technologies and Mini Project Lab			1		25	50	25	100		
	Total	100	100	100	400	50	100	50	700		

Program Structure for Master of Computer Application (MCA) Mumbai University (With Effect from 2016-2017) Semester II

Subject	Subject Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
MCA201	Data Structures	04			04			04	
MCA202	Operating System	04			04			04	
MCA203	Computer Networks	04			04			04	
MCA204	Financial accounting and Management	04			04			04	
MCA205	Decision making and Mathematical Modelling	04			04			04	
MCAL201	Lab I –OS and CN Lab		06			03		03	
MCAL202	Lab II –DS and Web Application		06			03		03	
	Total	20	12		20	06		26	

Subject	G. I. A. V.	Examination Scheme									
Code	Subject Name		Theory	y Course		Term					
		Interi	nal Assess	ment	End Sem.	Work	Pract.	Oral	Total		
		Test1	Test 2	Avg.	Exam.	WULK					
MCA201	Data Structures	20	20	20	80				100		
MCA202	Operating System	20	20	20	80				100		
MCA203	Computer Networks	20	20	20	80				100		
MCA204	Financial accounting and Management	20	20	20	80				100		
MCA205	Decision making and Mathematical Modelling	20	20	20	80				100		
MCAL201	Lab I – OS and CN Lab					25	50	25	100		

tools Lab	
Lab II –DS and Web Application MCAL202 Development 25 50 2	25

SEMESTER I (2016-17)

Subject Co	ne							Credits			
MCA101	ented Pro	ogran	nming				4				
Subject Code	Scheme Theory Pract		Scheme		Pract	Tut	Credits Assigned Theory		TW	Tut.	Total
MCA101				04				04			
Subject Code	Subject Name	Examir	nation Sch	heme							
MCA101	Object Oriented	Theory	/ Marks					TW	Pract	Oral	Total
	Programming	Interna	al Assessr	ment		End Semester Exam					
		Test1 (T1)	Test2 (T2)		erage T1 &	_					
		20	20				-	-	-	100	

Pre-requisites:

Basic Understanding of C Programming Language Knowledge of Algorithms and Control Flow of a program

Course Educational Objectives (CEO):

CEO 1	To Explore and Study Object oriented programming and advanced C++ concepts.
CEO 2	To Improve problem solving skills by applying object oriented techniques to solve
	bigger computing problems.
CEO 3	To provide a Strong foundation for advanced programming.

Course Outcomes: At the end of the course, the students will be able to:

MCA101.1	Comprehend Object oriented programming concepts and their application
MCA101.2	To write applications using C++.
MCA101.3	Implement programming concepts to solve bigger problems.

Sr. No.	Module	Detailed Contents	Hours
1	Programming Basics	Introduction to Programming, Programming Paradigms, Programming Languages and Types. Introduction to C - Basic Program Structure, Execution flow of C Program, Directives, Basic Input /Output Introduction to Object Oriented Programming- OOP concepts, Advantages, Applications, Comparison of C and C++-Data Types, Control Structures, Operators and Expressions	8
2	Introduction to C++	Structure of a C++ program, Execution flow, Classes and Objects, Access modifiers, Data Members, Member Functions, Inline Functions, Passing parameters to a Function(pass by Value, Pass by Address, Pass by Reference), Function with default arguments, Function Overloading, Object as a Parameter, Returning Object Static data members and functions, Constant Data members and functions Constructors- Default, Parameterized, Copy, Constructor Overloading, Destructors Arrays, Array as a Class Member, Array of Objects, Strings-Cstyle strings and String Class	10
3	Operator Overloading and Pointers	Operator Functions-Member and Non Member Functions, Friend Functions Overloading Unary operators Overloading binary operators(Arithmetic, Relational, Arithmetic Assignment, equality), Overloading Subscript operator Type Conversion Operators- primitive to Object, Object to primitive, Object to Object Disadvantages of operator Overloading, Explicit and Mutable Pointers, Pointer and Address of Operator, Pointer to an Array and Array of Pointers, Pointer arithmetic, Pointer to a Constant and Constant Pointer, Pointer Initialization, Types of Pointers(void, null and dangling), Dynamic Memory Allocation, Advantages and Applications of pointers	10

4	Inheritance	Inheritance Concept, Protected modifier, Derivation of	8							
	and	Inheritance- Public, Private and Protected, Types of								
	Polymorphism	Inheritance-Simple, Multilevel, Hierarchical, Multiple, Hybrid,								
		nstructors and Inheritance, Function Overriding and								
		Member hiding								
		Multiple Inheritance, Multipath inheritance – Ambiguities and								
		solutions								
		Polymorphism, Static and Dynamic Binding, Virtual								
		Functions, Pure Virtual Functions, Virtual destructors,								
		Abstract Classes, Interfaces								
5	Streams and	Files, Text and Binary Files, Stream Classes, File IO using	8							
	Exceptions	Stream classes, File pointers, Error Streams, Random File								
	•	Access, Manipulators, Overloading Insertion and extraction								
		operators								
		Error handling, Exceptions, Throwing and catching								
		exceptions, Custom Exceptions, Built in exceptions								
6	Advanced C++	Casting- Static casts, Const Casts, Dynamic Casts, and	8							
		Reinterpret Casts.								
		Creating Libraries and header files. Namespaces								
		Generic Programming, Templates, Class Templates, Function								
		Templates, Template arguments, STL								
		Database Programming with MySQL								

Reference Books:

- 1. The Complete Reference C, 4th EditionHerbert Sehlidt,Tata Mcgraw Hill
- 2. Object Oriented Programming in C++,4th Edition,Robert Lafore,SAMS Techmedia
- 3. The Complete Reference-C++,4th Edition. Herbert Schildt,Tata McGraw-Hill
- The Complete Reference Complete Refere
- 6. C++ How to Program,8th Edition,Deitel and Deitel, Prentice Hall
- 7. Practical C++ Programming,2nd Edition,Steve Quoaline,O'reilly Publication
- 8. Absolute C++,4th Edition, Walter Savitch, Pearson Education

Web References:

- 1. https://dev.mysql.com
- 2. www.github.com

Assessment:

Internal:

Assessment consists of two tests (T1 and T2). The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.

- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code Subject Name				ne			Credits				
MCA102 Software En				ngineerii	ng & Projec	t Mana	gem	ent	04		
Subject Code			Scheme		ie	Tut	As	edits signed eory	TW	Tut.	Total
MCA102 Software Engineerin Project Ma		ring	& agement				04				04
Subject Code	Subject Name		Examin	ation Sch	eme						
MCA 102	Software Engineeri	ng	Theory	Marks				TW	Pract	Oral	Total
& Project Internal A Management		l Assessm	nent	End Seme Exam	ster						
			Test1 (T1)	Test2 (T2)	Average of T1 & T2						
			20	20	20	80		-	-	-	100

Pre-requisites:

Knowledge of structure programming language and Application development.

Course Educational Objectives (CEO):

University of Mumbai, MCA Sem I and Sem II Rev. 2016-17

CEO 102.1	To understand the process of Software Engineering
CEO 102.2	To conceptualize the Software Development Life Cycle (SDLC) models.
CEO 102.3	To familiarize Project Management framework and Tools

Course Outcomes: At the end of the course, the students will be able to:

MCA102.1	Apply use of knowledge of Software Life Cycle to successfully implement the
	projects in the corporate world.
MCA102.2	Identify the Inputs, Tools and techniques to get the required Project deliverable and
	Product deliverable using 10 Knowledge areas of Project Management.
MCA102.3	Implement Project Management Processes to successfully complete project in IT
	industry.

Sr. No	Module	Detailed Contents	Hours
1	Introduction to software engineering and project management	Introduction to Software Engineering: Software, Evolving role of software, Three "R"-Reuse, Reengineering and Retooling, An Overview of IT Project Management: Define project, project management framework, The role of project Manager, Systems View of Project Management, Stakeholder management, Project phases and the project life cycle.	6
2	Software Process Models	Waterfall Model, Evolutionary Process Model: Prototype and Spiral Model, Incremental Process model: Iterative approach, RAD, JAD model, Concurrent Development Model, Agile Development: Extreme programming, Scrum.	6
3	Software Requirement Analysis and Specification	Types of Requirement, Feasibility Study, Requirement Analysis and Design: DFD, Data Dictionary, HIPO Chart, Warnier Orr Diagram, Requirement Elicitation: Interviews, Questionnaire, Brainstorming, Facilitated Application Specification Technique (FAST), Use Case Approach. SRS Case study, Software Estimation: Size Estimation: Function Point (Numericals). Cost Estimation: COCOMO (Numericals), COCOMO-II (Numericals). Earned Value Management.	11

8
·
l.
6
f
nd
7 Hrs
d
of
4 77
4 Hrs
e
io 4 II
is 4 Hrs
1 1

Reference Books:

- 1. Software Engineering, 5th and 7th edititon, by Roger S Pressman, McGraw Hill publication.
- 2. Managing Information Technology Project, 6edition, by Kathy Schwalbe, Cengage Learning publication.
- 3. Information Technology Project Management by Jack T Marchewka Wiley India publication.
- 4. Software Engineering 3rd edition by KK Agrawal, Yogesh Singh, New Age International publication.
- 5. Software Engineering Project Management by Richard H. Thayer Wiley India Publication.

6. Software Engineering for students: A Programming Approach by Douglas Bell, Pearson publication.

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code Subject		ect Name						Credits					
MCA103	MCA103 Computer Or				rganiza	ganization and Architecture				04			
Subject Subject Name Code		Name	:	Teachi Schem Theory	e	et	Ass		edits signed eory	TW	Tut.	Total	
MCA103	(Computer Organization & Architecture			04				04				04
Subject Code	Sub	ject Na	ame	Examin	ation Sch	ieme							
MCA 103	MCA Com 103 Orga		Organization		Theory Marks Internal Assessment			End		TW	Pract	Oral	Total
Architecture		interna	I ASSESSII	ient		Semes Exam	ter						
				Test1 (T1)	Test2 (T2)	Average T1 & T2	of						
				20	20	20		80		-	-	-	100

Pre-requisites:

Basic knowledge of Computer Fundamentals

Course Educational Objectives (CEO):

University of Mumbai, MCA Sem I and Sem II Rev. 2016-17

CEO1	To have a understanding of Digital systems and operation of a digital computer.
CEO2	To learn different architectures & organizations of memory systems, processor
	organization and control unit.
CEO3	To understand the working principles of multiprocessor and parallel organization's
	as advanced computer architectures

Course Outcomes: At the end of the course, the students will be able to:

MCA103.1	Design trade-offs Basic fundamentals in digital logic & structure of a digital
	computer
MCA103.2	Identify performance issues in processor and memory design of a digital
	computer.
MCA103.3	To Develop independent learning skills and be able to learn more about different
	computer architectures and hardware.
MCA103.4	To articulate design issues in the development of Multiprocessor organization &
	architecture.

Sr. No.	Module	Detailed Contents	Hrs
1	Fundamentals of Digital Logic	Boolean Algebra, Logic Gates, Simplification of Logic Circuits: Algebraic Simplification, Karnaugh Maps. Combinational Circuits: Adders, Mux, De-Mux, Sequential Circuits: Flip-Flops (SR, JK & D), Counters: synchronous and asynchronous Counter	12
2	Computer System	Comparison of Computer Organization & Architecture, Computer Components and Functions, Interconnection Structures. Bus Interconnections, Input / Output: I/O Module, Programmed I/O, Interrupt Driven I/O, Direct Memory Access	06
3	Memory System Organization	Classification and design parameters, Memory Hierarchy, Internal Memory: RAM, SRAM and DRAM, Interleaved and Associative Memory. Cache Memory: Design Principles, Memory mappings, Replacement Algorithms, Cache performance, Cache Coherence. Virtual Memory, External Memory: Magnetic Discs, Optical Memory, Flash Memories, RAID Levels	08
4	Processor Organization	Instruction Formats, Instruction Sets, Addressing Modes, Addressing Modes Examples with Assembly Language [8085/8086 CPU], Processor Organization, Structure and Function. Register Organization, Instruction Cycle, Instruction Pipelining. Introduction to RISC and CISC Architecture, Instruction Level Parallelism and Superscalar Processors: Design Issues.	12
5	Control Unit	Micro-Operations, Functional Requirements, Processor Control, Hardwired Implementation, Micro-programmed Control	04

6	Fundamentals	Parallel Architecture: Classification of Parallel Systems,	08					
	of Advanced	Flynn's Taxonomy, Array Processors, Clusters, and NUMA						
	Computer	Computers.						
	Architecture	Multiprocessor Systems : Structure & Interconnection						
		Networks,						
		Multi-Core Computers: Introduction, Organization and						
		Performance.						
7	Case Study	Case study: Pentium 4 processor Organization and	02					
	_	Architecture						

Reference Books:

- 1. Modern Digital Electronics, R.P.Jain, 4e, Tata Mc Graw Hill.
- 2. Computer Organization & Architecture, William Stallings, 8e, Pearson Education.
- 3. Computer Architecture & Organization, John P. Hayes, 3e, Tata McGraw Hill.
- 4. Computer Organization, 5e, Carl Hamacher, Zconko Vranesic & Safwat Zaky, Tata McGraw Hill.
- 5. Digital Computer Fundamentals, Bartee C. Thomas , McGraw-Hill International Edition
- 6. Computer System Architecture, M. Morris Mano, Pearson Education.
- 7. Computer Architecture & Organization, Nicholas Carter, McGraw Hill.
- 8. Computer Architecture & Organization, 2e, Miles Murdocca & Vincent Heuring, Wiley India.

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code Subj		ject Name						Credits			
MCA104	IT i	n Mana	Management					4			
Subject Subject Name Code		2)	Teachi Schem	e		Credits Assigned					
				Theory	V Pract	Tut	Th	eory	TW	Tut.	Total
MCA104	IT in	Mana	gement	04			04				04
Subject Code	Subject	Name	Examin	ation Sch	neme						
MCA 104	MCA IT in Theory			Marks				TW	Pract	Oral	Total
		Interna	Internal Assessment End Semester Exam								
			Test1 (T1)	Test2 (T2)	Average of T1 & T2						
			20	20	20	80		-	-	-	100

Pre-requisites:

Basic knowledge Information Technology

Course Educational Objectives (CEO):

CEO 1	Understand Information Technology and its practices in managing the business.
CEO 2	Conceptualize the process of Technology acquisition in an Industry.
CEO 3	Familiar with impact and issues of Information Technology for managing business
	operations with social concern.

Course Outcomes: At the end of the course, the students will be able:

MCA101.1	To use various IT tools used for managing the Industrial operation.
MCA101.2	To apply the decision for selecting the proper IT tools for Management operation.
MCA101.2	To design the strategic plan for using Information Technology in Management

Sr.	Module	Detailed Contents	Hours
No. 1	Information Technology Support and	Introduction to Information Technology, Business Values Of IT, Role Of Computer in Modern Business, Current Trends, Business in Digital Economy.	6
	Application		
2	Information System and business applications	Introduction to Information System: Information System, Classification and type of Information System, Information system Infrastructure and architecture, Role of Information systems in Business Today, Perspective on Information systems, Software and hardware platform to Improve Business Performance, Management opportunities challenges and Solutions, Business applications: Roles of	8
3	Acquisition of Information Technology	IT in E-commerce, M-commerce. Need to acquire technology, developing new technologies, Increasing strategic options, Gaining efficiency improvements, sources for acquiring technology, Responding to the competitive environment.	8
4	Impact of Information Technology on organization and Strategic Issues of Information Technology	Impact of Information Technology on organization: Modern Organizations ,Creating New Types of Organizations Strategic Issues of Information Technology: Information Technology and Corporate Strategy, Creating and Sustaining a Competitive Edge, Integrating Technology with the Business Environment, Managing Information Technology	8
5	IT for managing International business and Governance	International Business and IT technologies: International Business Strategies, Key Issues in International Environment, Managing IT Internationally. Governance concept: IT Governance, Internet governance, E-governance and internal IT processes.	10
6	Information Technology Issues For Management	Management in a Technological Environment, The Changing World of Information Action Plan	6
7	Societal Implications And The Future With Technology	Social Responsibilities, Ethics and Information Technology, The Future with Information Technology	6

Reference Books

Information Technology For Management – Transforming Organizations in Digital Economy by EFRAIM Turban, Dorothy Leidner (WILEY Student Edition)
Information Technology For Management by B. MuthuKumaran (OXFORD University Press)

Information Technology For Management 7th ed Authors <u>Henry C Lucas</u>,Mc Graw Hill Publications.

Information Technology For Management by Dr. CH. Seetha Ram.

Technology Acquisition ,A guided approach to technology acquisition and protection decision by Mortara and Ford.

Business Intelligence: Practices, Technologies, and Management- Rajiv Sabherwal, Irma Becerra-Fernandez

Manging and using Information Systems, K E Pearlson, C S Saunders, Wiley India

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject (Subject Code Subj			oject Name						Credits		
MCA105	MCA105 Stat			istics And Probability						04		
Subject Code		Subject	Name	2	Teachi Schem Theory	e	Tut	As	edits signed	TW	Tut.	Total
MCA105	5	Statisti Probab		nd	04			04	eory			04
Subject Code	Sı	ubject Na	ame	Examin	ation Sch	ieme						
MCA 105	CA Statistics			Theory	Marks				TW	Pract	Oral	Total
	P	robabili	ty	Interna	l Assessn	nent	End Seme Exam	ster				
				Test1 (T1)	Test2 (T2)	Average of T1 & T2						
				20	20	20	80		-	-	-	100

Pre-requisites:

Basic Mathematics, combinatorics and calculus Knowledge.

Course Educational Objectives (CEO):

CEO 1	To equip the students with a working knowledge of probability, statistics, and modeling in the presence of uncertainties.
CEO 2	To understand the concept of hypothesis and significance tests
CEO 3	To help the students to develop an intuition and an interest for random phenomena and to introduce both theoretical issues and applications that may be useful in real life.

Course Outcomes: At the end of the course, the students will be able to:

MCA105.1	Distinguish between quantitative and categorical data			
MCA105.2	Apply different statistical measures on data			
MCA105.3	Identify, formulate and solve problems			
MCA105.4	Classify different types of Probability and their fundamental applications			

Syllabus

Sr.	Module	Detailed Contents	Hours				
No							
1	Measures of	Frequency Distribution, Histogram, Stem and leaf diagram,	8				
	Central	ogives, Frequency Polygon, Mean, Median, Mode, Range,					
	Tendency	Quartile Deviation, Mean Deviation, Box whisker plot,					
	&Measures of	Standard Deviation, Coefficient of Variation					
	Dispersion						
2	Skewness,	Karl Pearson's coefficient of Skewness, Bowley's	8				
	Correlation &	coefficient of Skewness, Scatter Diagram, Karl Pearson's					
	Regression	coefficient of correlation, Spearman's rank correlation					
		coefficient, Linear Regression and Estimation, Coefficients					
		of regression					
3	Theory of	Classes and Class Frequencies, Consistency of Data,	4				
	Attributes	Independence of Attributes, Association of Attributes					
4	Testing of	Hypothesis, Type I and Type II errors. Tests of significance	10				
	Hypothesis	– Student's t-test:Single Mean, Difference of means, paired					
		t-test, Chi-Square test:Test of Goodness of Fit,					
		Independence Test					
5	Introduction to	Random experiment, Sample space, Events, Axiomatic	4				
	Probability	Probability, Algebra of events					
6	Conditional	Conditional Probability, Multiplication theorem of	6				
	Probability	Probability, Independent events, Baye's Theorem					
7	Random	Discrete random variable, Continuous random variable,	7				
	variables	Two-dimensional random variable, Joint probability					
		distribution, Stochastic independence					
8	Mathematical	Expected value of a random variable, Expected value of a	5				
	Expectation	function of a random variable, Properties of Expectation and					
		Variance, Covariance					

Reference Books:

- 1. Fundamentals of Mathematical Statistics -1^{st} Edition S.C.Gupta, V.K.Kapoor , S Chand 2. Introduction to Probability & Statistics -4^{th} Edition J.Susan Milton, Jesse C. Arnold Tata McGraw Hill
- 3. Fundamentals of Statistics: 7th edition S C Gupta, Himalaya Publishing house
- 4. Probability and Statistics with Reliability, Queuing, And Computer Science Applications (English) 1st Edition: Kishore Trivedi, PHI
- 5. Schaum's Outlines Probability, Random Variables & Random Process 3rd Edition Tata McGraw Hill
- 6. Probability & Statistics for Engineers: Dr J Ravichandran, Wiley
- 7. Statistics for Business and Economics: Dr Seema Sharma, Wiley
- 8. Applied Business Statistics 7th Edition Ken Black, Wiley

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject	Subject Subject Name		ing Schem Hours per v		Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
MCA L101	Lab 1-SEPM and OOP Lab		06	-		03		03
	Examination Scheme							
	End Sem. Exam. [Once in a semester]							
	Laboratory Name Term Work Pract. Oral						Total	
MCA Lab 1-SEPM and OOP Lab L101				25	50	25	100	

Pre-requisites:

Basic Understanding of C Programming Language Knowledge of Algorithms and Control Flow of a program

Course Educational Objectives (CEO):

CEO 1	To Understand Concepts of Object oriented programming and basics of Software
	Engineering
CEO 2	To learn how C++ supports Object Oriented Principles.
CEO 3	To Study Design of reliable and maintainable Object Oriented Applications using
	an Integrated Software Engineering Approach.

Course Outcomes: Students will be able to:

MCA L101.1	Design and Develop the solution to a problem using Object Oriented
	Programming Concepts
MCA L101.2	Demonstrate use of C++ Concepts
MCA L101.3	Develop real time applications.

Sr.	Module	Detailed Contents	Hours		
No.					
1	Programming Basic Programs using C				
	Basics Programming Assignments using Control Structures				
		Logic Building Programming Assignments			
2	Introduction to Programming Assignments Using Classes				
	C++	Programming Assignments using Static members and Methods			
		Programming Assignments using Constant members and			
		Methods			
		Programming Assignments using Arrays and Strings			
3	Operator	Programming Assignments to Overload Operators	8		
	Overloading	Programming Assignments for Data Conversions			
	and Pointers	Programming Assignments Using Pointers			

4	Inheritance and	Programming Assignments based on Inheritance and	8						
	Polymorphism	Polymorphism							
5	Streams and	Programming Assignments based on Streams and Exceptions	8						
	Exceptions								
6	Advanced C++	Programming Assignments based on Templates	8						
		Case Study- Database Connectivity using MySQL							
7	SRS	Business Case	4						
		Software Requirement Specification (SRS to be attached for							
		any sample project)							
8	Scheduling	Introduction to Project Scheduling tools (any open source	8						
	Tools and WBS	softwares)							
		Creating a Project Plan or WBS							
		Establishing the Project Start or Finish Date							
		Entering Tasks							
		Attach Supporting Information							
		Entering Task Durations							
		Setting Task Constraints (Milestones)							
		Gantt chart							
		Pert/CPM chart							
9	Resource	Resource Management (using open source tool)	4						
	Management	Managing Project Cost							
10	Cost Estimation	Solving examples using COCOMO and COCOMO II models,	4						
	and Quality	CPM numerical							
	Standards	Case studies on Quality Standards							
11	A Mini -		10						
11									
	Project	(Maximum two students in a group)							

Reference Books:

- 1. The Complete Reference C, 4th EditionHerbert Sehlidt,Tata Mcgraw Hill
- 2. Object Oriented Programming in C++,4th Edition,Robert Lafore,SAMS Techmedia
- 3. The Complete Reference-C++,4th Edition. Herbert Schildt,Tata McGraw-Hill
- 4. The C++ Programming Language, 4th Edition,BjarneStroustrup,AddisonWesly
- 5. Starting Out with C++ Early Objects, 8th Edition, Tony Gaddis et al, Addison-Wesley
- 6. C++ How to Program,8th Edition,Deitel and Deitel, Prentice Hall
- 7. Practical C++ Programming,2nd Edition,Steve Quoaline,O'reilly Publication
- 8. Absolute C++,4th Edition, Walter Savitch, Pearson Education
- 9. Software Engineering, 5th and 7th edititon, by Roger S Pressman, McGraw Hill publication.
- 10. Managing Information Technology Project, 6edition, by Kathy Schwalbe, Cengage Learning publication.
- 11. Information Technology Project Management by Jack T Marchewka Wiley India publication.
- 12. Software Engineering 3rd edition by KK Agrawal, Yogesh Singh, New Age International publication.
- 13. Software Engineering Project Management by Richard H. Thayer Wiley India Publication.

14. Software Engineering for students: A Programming Approach by Douglas Bell, Pearson publication.

Web References:

- 1. https://dev.mysql.com
- 2. www.github.com

Subject	Subject	Teaching Scheme (Contact				Credits Assigned		
Code	Name	Но	ours per We	eek)				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Lab-II: Web		06			03		03
MCA	Technologies							
L102	and Mini							
	Project Lab							
	Examination Scher							
	End Semester Exam [Once in a Semester]							
	Labora	atory Nam	ne		Term	Practical	Oral	Total
					Work			
MCAL	MCAL102: Lab-II: Web Technologies and Mini					50	25	100
	Project Lab							

Pre-requisites: Basic understanding of programming fundamentals

Course Educational Objectives (CEO):

CEO 1	To study the concept and architecture of World Wide Web.
CEO 2	To learn web application development using open source technology.
CEO 3	To provide skills to design and develop dynamic web sites.

Course Outcomes: At the end of the course student will be able to

MCA L102.1	Acquire knowledge about functionality of world wide web
MCA L102.2	Develop web based applications using open source technology.
MCA L102.3	Design and develop dynamic web sites.

Sr.	Module	Detailed Contents	Hours
No.			
1.	Introduction	Concept of WWW, Internet and WWW, HTTP Protocol:	06
	to the Web	Request and Response, Web browser and Web servers.	
	Technologies		
2.	HTML	Basics of HTML, Structure of HTML code, formatting and	12
		fonts, color, hyperlink, lists, tables, images	
		(Programming Assignments based on above topics)	
3.	Style Sheets	Need for CSS, introduction to CSS, basic syntax and	12
		structure, Classes and Pseudo Classes, CSS tags for setting	
		background images, colors and properties, manipulating texts,	
		using fonts, borders and boxes, margins, padding lists,	
		positioning etc. (Programming Assignments based on above	
		topics)	

4.	Introduction	Configuration and Installation of PHP, basic syntax of PHP,	12
	to PHP	Expressions, Statements, Arrays, Functions, string, Regular	
		Expressions, Date and Time Functions	
		(Programming Assignments based on above topics)	
5.	PHP and	File Handling- Creating a File, Reading from Files, Copying	10
	MySQL	Files, Moving File, Deleting File, Updating File, Uploading	
		Files, Form Designing using HTML 5, Validation's using	
		PHP Connection to server, creating database, selecting a	
		database, listing database, listing table names, creating a table,	
		inserting data, altering tables, queries, deleting database,	
		deleting data and tables, Master-Detail relationships using	
		Joins. Session Management- Using Cookies in PHP, HTTP	
		Authentication, Using Sessions	
		(Programming Assignments based on above topics)	
6	Mini Project	A Mini – Project based on DS and WAD using an integrated	26
		approach.(Maximum Two students in a Group)	

Reference Books:

- 1. Web Technologies, Black Book, dreamtech Press
- 2. HTML 5, Black Book, dreamtech Press
- 3. Learning PHP, MySQL, JavaScript, CSS and HTML 5, Robin Nixon, O'Reilly publication
- 4. Developing Web Applications in PHP and AJAX, Harwani, McGrawHill
- 5. Professional PHP Programming, Jesus Caspagnetto, Etal. Wrox Publication.
- 6. Internet and World Wide Web How to program, P.J. Deitel & H.M. Deitel, Pearson
- 7. Developing Web Applications, Ralph Moseley and M. T. Savaliya, Wiley-India

SEMESTER II (2016-17)

Subject Code 5			oject Name								Credits			
			a Struc	tures	04									
Subject Code	Subject Name Data Structures				Teaching Scheme Theory Pract		Ass		edits signed eory	TW	Tut.	Total		
MCA201				04				04				04		
Subject Code	Subject Name		Examin	nation Sch	eme									
MCA 201	Data Structur	es	Theory Marks TW							Pract	Oral	Total		
			ıl Assessm	Assessment E S										
		•	Test1 (T1)	Test2 (T2)	Average o	f								
		•	20	20	20		80		-	-	-	100		

Pre-requisites:

Understanding of Algorithms

Course Educational Objectives (CEO):

CEO 1	To teach efficient storage mechanisms of data for an easy access.
CEO 2	To design and implement various basic and advanced data structures.
CEO 3	To introduce various techniques for representation of the data in the real world.

Course Outcomes: At the end of the course, the students will be able to :

MCA201.1	Analyze and compute efficiency of various algorithms.
MCA201.2	Effectively choose the data structure that efficiently model the information in a
	problem
MCA201.3	Describe how Linear data structures are represented in memory and used by
	algorithms and their applications
MCA201.4	Identify the benefits of Non-linear Data Structures and their applications

Sr	Module	Detailed Contents	Hours
1	Introduction to	Introduction of Data structures, Abstract Data Types,	4
	Data Structures	Performance Analysis: Space Complexity, Time Complexity,	
	& Algorithms	Asymptotic Notations (Big O, Omega, Theta), Performance	
		measurement, Divide and Conquer, Back Tracking Method,	
		Dynamic programming	
2	Sorting and	Bubble sort, Insertion sort, Radix Sort, Quick sort, Merge sort,	6
	searching	Heap sort, Selection sort, shell Sort, Linear Search, Sequential	
	algorithms	search, Binary search	
3	Hashing	Different Hashing Techniques, Address calculation	8
		Techniques, Common hashing functions, Collision resolution	
		techniques: Linear probe, Quadratic probe, Key offset.	
		Rehashing, Double hashing, Link list addressing.	
4	Linear Data	Stack Definition, Operations, Implementation of Stacks	14
	Structures	(Array and Linked list) and applications-Evaluation of postfix	
		expression, Balancing of parenthesis	
		Queue: Definition, Operations, Implementation of simple	
		queue (Array and Linked list) and applications of queue-BFS	
		Types of queues: Circular, Double ended, Priority,	
		Implementation using linked list	
		Types of Linked List: Singly, Doubly and Circular Linked list	
		Definition, Operations (Insert, delete, traverse, count, search)	
		Applications of Linked List: Polynomial Addition and	
		Subtraction	
5	Non-linear	Tree Definition and concepts,	14
	Data Structures	General Tree- Definition, Insertion and Deletion into general	
		tree,	
		Binary Tree- Definition, Insertion and Deletion into binary	
		tree,	
		Traversal of a binary tree, Reconstruction of a binary tree	
		from traversal, Conversion of general tree into binary tree,	
		Huffman tree, Expression tree, Binary threaded three	
		Binary Search Tree- Definition, Operation, Implementation	
		AVL tree- Definition, AVL tree rotation with examples,	
		Heaps-Definition, Operations (insertion, delete, build)	
		M way Tree- Introduction, B tree-definition and examples and	
6	Graphs	Definition, Types, Operations, Representation, Networks,	6
		Traversals of graph, Minimum spanning tree, Kruskal's	
		Algorithm, Prim's Algorithm, Warshall's Algorithm, Shortest	
		path algorithm-dijsktra's algorithm	

Reference Books

1. Richard F Gilberg Behrouz A Forouzan , "Data Structure A Pseudocode Approach with C". Second edition

- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to ALGORITHMS", PHI, India Second Edition.
- 3. Shaum's Outlines Data Structure Seymour Lipschutz TMH
- 4. Michael T.Goodrich "Data Structures and Algorithms in C++-" Wiley Publications

Theory paper will be of **80** marks. **Internal** assessment will be of **20** marks, which will be the average of two tests (T1 and T2) of 20 marks each.

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code Subje			lam	e	Credits						
MCA202 Operating Sys				ystem			4				
Subject Code	Subject Name Operating System			Teaching Scheme Theory Pract		Tut	Credits Assigned Theory		TW	Tut.	Total
MCA 202				04			04				04
Subject Code MCA 202	Subject Name Operati			ation Sch Marks	neme			TW	Pract	Oral	Total
	Syster		Internal Assessment				End Semester Exam				
		Test (T1)		Test2 (T2)	Average of T1 & T2						
		20		20	20	80		-	-	-	100

Pre-requisites: Computer Organization and Architecture

Course Educational Objectives (CEO):

CEO 1	To teach Operating system design
CEO 2	To understand the process concurrency and synchronization, deadlocks and various
	memory management policies.
CEO 3	To teach the concepts of input/output, storage and file management
CEO 4	To teach various protection and security mechanisms and to study and compare
	different operating systems & their features.

Course Outcomes: At the end of the course, the students will be able to :

MCA202.1	Classify different styles of operating system designs
MCA202.2	Analyze process management, I/O management, memory management functions of
	Operating System

MCA202.3	Employ process scheduling and disk scheduling algorithms.
MCA202.4	Explore file management and protection and security concepts.

Syllabus:

Sr No	Module	Detailed Contents	Hours
1	Introduction to System Software & operating System	l	5
2	Process and Thread Management	Process and Thread Management: - Concept of process and threads, Process states, Process management, Context switching, Interaction between processes and OS, Multithreading, CPU scheduling algorithms, multiprocessor scheduling algorithms, Real time scheduling algorithms	10
3	Concurrency Control	Concurrency Control: Concurrency and Race Conditions, Mutual exclusion requirements, Software and hardware solutions, Semaphores, Monitors, Classical IPC problems and solutions, Deadlock, Characterization, Detection, Recovery, Avoidance and Prevention	8
4	Memory Management	Memory Management: Memory partitioning, Swapping, Paging, Segmentation, Virtual memory, Overlays, Demand paging, Performance of Demand paging, Virtual memory concepts, Page replacement algorithms, Allocation algorithms	9
5	Mass Storage Structure	Mass Storage Structure: Secondary-Storage Structure, Disk structure, Disk scheduling, Disk management, Swap-space management, Disk reliability, Stable storage implementation, Introduction to clock, Clock hardware, Clock software	7
6	File systems	File systems: File concept, File support, Access methods, Allocation methods, Directory systems, File protection, Free space management	4
7	Protection & Security	Protection & Security: Protection- Goals of protection, Domain of protection, Access matrix, Implementation of access matrix, Revocation of access rights Security- The security problem, Authentication, One-Time passwords, Threats	4
8	Case Study	Case Study: Study of different Operating, Systems(Linux, Windows, Android OS, iOS)	5

Reference Books

1. Operating System Concepts (9th Ed) by Silberschatz and Galvin, Wiley, 2000.

- 2. Operating Systems (5th Ed) Internals and Design Principles by William Stallings, Prentice Hall, 2000.
- 3. Modern Operating Systems by Andrew S Tanenbaum, Prentice Hall India, 1992.
- 4. Operating Systems (3rd edition) by Gary Nutt, NabenduChaki, SarmishthaNeogy, Pearson
- 5. Operating Systems Design & Implementation Andrew S. Tanenbaum, AlbertS. Woodhull Pearson
- 6. Operating Systems Achyut S. Godbole Tata McGraw Hill
- 7. Operating Systems D.M.Dhamrdhere Tata McGraw Hill

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code Sub			bject Name								Credits			
MCA 203	Comp	nputer Networks								4				
Subject Code	Subject Name Computer Networks			Schem	Teaching Scheme Theory Pract		Ass		edits signed eory	TW	Tut.	Total		
MCA203				s 04		-		04	-			04		
Subject Code MCA	Subject Name Comput	ition Scho	eme				TW	Pract	Oral	Total				
203	Networks Internal A				ent Avera	ge of	End Semes Exam	ster						
		(T		(T2) 20	T1 & ⁻ 20	T2	80		-	-	-	100		

Pre-requisites:

Digital Computer Fundamentals and computer architecture.

Course Educational Objectives (CEO):

CEO 1	To help learners get a grounding of basic network components and architecture.
CEO 2	To explore basic networking models.
CEO 3	To learn the way protocols are used in networks and their design issues.

Course Outcomes: At the end of the course, the students should be able to :

MCA203.1	Comprehend the basic concepts of computer networks and data communication		
	systems.		
MCA203.3	Analyze basic networking protocols and their use in network design		
MCA203.3	Explore various advanced networking concepts.		

Detaile	Module	Sr. No
---------	--------	--------

1	Basics of Digital Communication	Introduction to digital communication, Signal propagation, Signal types, Signal parameters, Switching & forwarding, Transmission impairments, Attenuation, Delay distortion, Noise, Effects of limited bandwidth, Data rate limits-Nyquist's theorem and Shannon's theorem.	05
2	Network Organization and Models	Basics of computer Network, topology & types of topologies, types of networks(LAN, MAN, WAN), Concept of Intranet & Extranet, Ad-Hoc Networks, types of communications (Asynchronous and synchronous), modes of communications (simplex, half duplex, full duplex), Protocols, Networking models, ISO-OSI Reference Model, Design issues of the layer, Internet Model (TCP/IP), Comparison of ISO-OSI & TCP/IP Model	06
3	Networking Devices	Connectivity Devices: Passive & Active Hubs, Repeaters, , Switches (2-Layer Switch, 3-Layer switch(Router), Bridges (Transparent Bridges, Spanning Tree, Bridges, Source Routing Bridges), Brouters, Gateways.	04
4	Application, Presentation & Session Layer	Principles of Application Layer Protocols, The Web and HTTP, FTP, Telnet, Electronic Mail in the Internet (SMTP, MIME, POP3, IMAP), DNS, Introduction to SNMP.	06
5	Transport layer	Transport-Layer Services, port addressing, Multiplexing and Demultiplexing, Principles of Reliable Data Transfer, Congestion Control, TCP's Congestion Control. Quality of Service: Introduction, Queue Analysis, QoS Mechanisms, Queue management Algorithms, Feedback, Resource, Reservation.	10
6	Network layer	Network Service Model, Data gram & Virtual Circuit, Routing Principles, The Internet Protocol,(ipv4 & ipv6), IP addressing and subnetting, Routing Algorithms., Hierarchical Routing, Routing in the Internet: Intra and inter domain routing; Unicast Routing Protocols RIP, OSPF, BGP, Multicast Routing Protocols: MOSPF, DVMRP. ATM Networks: Need for ATM, ATM Layers, ATM adaptation Layers, IP over ATM, Multi protocol Label switching (MPLS), Drawbacks of traditional routing methods, Idea of TE, TE and Different Traffic classes	11
7	Data Link Layer	Data Link Layer, Error Detection and Correction Techniques, Multiple Access Protocols, LAN Addresses and ARP & RARP, PPP: The Point-to-Point Protocol, Ethernet standards – IEEE 802.3, 802.5, FDDI, 802.6.	08
8	Physical layer	Physical Layer, Types of media wired and wireless media	02

Reference Books:

1. Computer Networking: A Top-Down Approach Featuring the Internet , J. F. Kurose and K. W. Ross, Seventh Edition, Addison-Wesley.

- 2. Computer Networks: Principles, Technologies and Protocols for Network design, N. Olifer and V. Olifer, Wiley India
- 3. Data Communication and Networking, B. A. Forouzan, Fourth Edition, McGraw Hill.
- 4. Computer Networks, Andrew Tenenbaum, Fifith Edition, PHI.
- 5. TCP/IP Protocol Suite, B. A. Forouzan, Third Edition, Tata McGraw Hill edition.
- 6. Data and Computer Communications, William Stallings, Ninth Edition, Pearson Education

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code Subj		Subject Nan	bject Name						Credits		
MCA204	MCA204 Financial			g and Man	agemen	ıt	4	4			
Subject Code	Subject Name		Teach Schem Theor	ne	Tut	Credits Assigne Theory		Tut.	Total		
MCA204	Financial Accounting and Management		04			04			04		
Subject Code MCA204	Subject Name Financial Accountin	Theory	ation Sch	neme		TW	Pract	Oral	Total		
	and Manageme	Interna	I Assessn	Ssessment End Semester Exam		ster					
		(T1)	(T2)	of T1 & T2	80	-	-	-	100		

Pre-requisites:

Some basic knowledge of accounting and good mathematical skills is recommended.

Course Educational Objectives (CEO):

CEO 1	Introduce the principles, concepts, and applications of financial accounting and
	management.
CEO 2	Explore, and use the accounting concepts emphasizing how financial statements communicate information about the business corporation's performance and position for users internal and external to management.
CEO 3	To introduce the underlying framework and concepts of Financial Accounting and
	Management and how these fit into the current global business scenario.

Course Outcomes: At the end of the course, the students should be able to:

	To use accounting functions as an information development and communication
	system that supports economic decision making and provides value to entities and
	Preparation of financial statements and related information and apply analytical
	tools in making both business and financial decisions.
MCA204.3	To analyze the impact of accounting system on several business functions and
	managers' decision making.
MCA204.4	To analyze and use financial statements; prepare budgets and investment options;
	assess risks and the rewards involved in firm's financial decisions.

Syllabus

Sr	Module	Detailed Contents	Hours					
No.								
1	Introduction to	Introduction to Accounting:- Principles, Concepts, Double	12					
	Accounting	entry system of accounting, introduction to journal, voucher,						
	J	edger; preparation of trial balance, final accounts, trading and						
		profit and loss account and balance sheet.(theory and						
		numerical)						
		Accounting Standards - AS1, AS2, AS3,AS9(only Theory),						
2	BEA and	Break-even Analysis:-Concept of Break Even Point, Cost-	12					
	Budgeting	Volume-Profit Analysis, Determination of Break Even Point,						
	0 0	Margin of Safety and PV ratio, Impact of changes in Cost or						
		selling price on BEP - Practical applications of Break-even						
		Analysis.						
		Budgeting: Budgeting-cash budget (theory and numerical),						
3	Financial	Financial Management:-Meaning and scope, Objectives of time	10					
	Management	value of money, goals of FM, profit vs. value maximization.						
	Concepts	Leverages - operating, financial, composite.; cost of equity,						
	•	preference and equity shares, bonds and debentures, weighted						
		average cost of capital, capital gearing fundamentals.						
4	Tools and	Tools and Techniques for Financial Statement Analysis:-	10					
	Techniques of	Ratio Analysis – Classification of Ratios – Short term solvency						
	\mathbf{FM}	and long term solvency – Profitability ratios - Analysis and						
		Interpretation of Financial Statements through ratios of						
		Liquidity, Solvency and Profitability. Fund Flow Statement - Meaning, Importance, Statement of						
		changes in working capital and statement of Sources and						
		application of funds.						
		Cash flow Analysis:- cash flow Statements: Preparation,						

5	Capital	Capital Budgeting:- Capital and its significance, Types of 8
	Budgeting	Capital, Estimation of Fixed and Working capital requirements,
	Concepts	Methods and sources of raising capital. Capital Budgeting:
	Concepts	features of capital budgeting proposals, Methods of Capital
		Budgeting: Payback Method; purpose of capital budgeting,
		capital budgeting process, and types of capital investment
		decisions.
		Accounting Rate of Return (ARR) and Net Present Value
		Mathad (cimple numerical puchlame on these)

Reference Books:

- 1. Dr. Kapil Jain, Prof. Rashmi Somani, "Accounting for Managers", Dreamtech Press, 2015
- 2. S N Maheshwari, "Accounting for Management", Vikas Publishing, 3rd edition
- 3. Prasanna Chandra, "Financial Management Theory and Practices", TMH, 9th edition
- 4. Weygandt, Himmel, Kiesco, "Accounting Principles", 12th Edition, Wiley Publication.
- 5. Khan & Jain, "Financial Management", Mc Graw Hill
- 6. Siddiqui S.A. Siddiqui, "Managerial Economics & Financial Analysis", A.S. New Age.
- 7. V Sharan, "Fundamentals of Financial Management", Pearson Education.

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject Code		Subject Name							Credits		
MCA205	De	Decision Making and Mathematical Modeling							4		
Subject Code	Subject Name		Teach Schem Theory	ne	ıct	Tut	As	edits signed eory	TW	Tut.	Total
MCA205	Decision Making and Mathematical Modelling		d 04				04				04
Subject Code	Subject Name	Examir	ation Sch	neme							
MCA205	Decision Making and	Theory	Marks					TW	Pract	Oral	Total
	Mathematica Modelling	Interna	ıl Assessr	nent		End Semes Exam	ster				
		Test1 (T1)	Test2 (T2)	Averagof T1							
		20	20	20		80		-	-	-	100

Pre-requisites:

Basic knowledge of mathematics

Course Educational Objectives (CEO):

CEO 1	To Understand the fundamental ideas of Discrete Mathematics
CEO 2	To Express the decision making concepts as a mathematical model
CEO 3	To Study and identify a real life business problem and computing requirements
	appropriate to its solution

Course Outcomes: At the end of the course, the students will be able to:

MCA205.1	Develop mathematical and logical thinking
MCA205.2	Model situations from variety of settings in generalised mathematical form
MCA205.3	Solve the real world business problem

Syllabus

Sr	Module	Detailed Contents	Hours				
1	Mathematical	Propositions and logical operations, Conditional Statements,	8				
	logic	Methods of Proof, Mathematical Induction, Mathematical					
		Statements , Logic and Problem Solving, Normal Forms					
2	Sets and	Set operations and functions, Product sets and partitions,	10				
	Relations	Relations and digraphs, Paths in Relations and Digraphs,					
		Properties of Relations , Equivalence Relations, Operations					
		on Relations, Partially Orders Sets, Hasse diagram					
3	Graphs	Graph, Representation of Graph, Adjacency matrix,	5				
		Adjacency list, Euler paths and Circuits, Hamiltonian Paths					
		and Circuits					
4	Mathematical	Mathematical Models - Vehicular Stopping Distance	8				
	Models	Modeling using decision theory: Probability and Expected					
		Value (e.g. Rolling the Dice, Life Insurance, Roulette etc)					
		Decision Trees, Classification problems using Bay's					
		theorem					
5	Modeling using	Recurrence relation - Fibonacci series, Tower of Hanoi	10				
	difference	,Lines in a plane Homogenous linear equations with constant					
	equation	coefficients, Particular Solution, Total Solution, Divide and					
		Conquer Recurrence Relations (Fast Multiplication of					
		Integers, Fast matrix Multiplication)					
6	Characteristics	Number of Possible Solutions, Time-Changing Environment,	4				
	of Complex	Problem-Specific Constraints, Multi-objective Problems,					
	Business	Modeling the Problem A Real-World Examples,					
	Problems						
7	MADM &	Introduction to Multiple Attribute Decision-making	7				
	MCDM	(MADM) Multiple Attribute Decision-making Methods,					
		Simple Additive Weighting (SAW) Method, Weighted					
		Product Method (WPM), Analytic Hierarchy Process (AHP)					
		Method, Entropy Method, Compromise Ranking Method					
		(VIKOR), Weighted Average Method (WAM)					
		Introduction to Multiple Criteria Decision Making (MCDM)					

Reference Books

- $1. \ \ \, Discrete \ Mathematics \ and \ Its \ Applications \ 4^{th} \ Edition \ , \ Kenneth \ H. \ Rosen \ , McGraw \ Hill$
- 2. A First Course in Mathematical Modeling 5th Edition, Frank R. Giordano, William P. Fox, Steven B. Horton
- 3. Adaptive Business Intelligence,F 1st Edition by Zbigniew Michalewicz, Martin Schmidt, Matthew Michalewicz, ConstantinChiriac, Springer Publication
- 4. Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods,1st Edition by R. VenkataRao, Springer Publication
- 5. Discrete Mathematical structures 4th Edition, Kolman, Busby, Ross, PHI

- 6. Discrete Mathematics : SemyourLipschutz, VarshaPatilIINd Edition Schaum's Series TMH
- 7. Data Mining: Introductory and Advanced Topics ,3rd Edition, Dunham , Sridhar

Assessment:

Internal:

Assessment consists of two tests (T1 and T2) .The final marks should be the average of the two tests.

End Semester Theory Examination: Guidelines for setting up the question paper.

- 1. Question paper will comprise of total six questions.
- 2. Question Number One should be compulsory.
- 3. All question carry equal marks.
- 4. Students can attempt any three from the remaining.
- 5. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Subject	Teaching Scheme Subject Name (Contact Hours per week)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
MCA L201	Operating System and Computer Networks Lab (OS and CN Lab)		06			03		03
	Examination Scheme						•	
	End Sem. Exam. [Once in a semester]							
Laboratory Name					Term Work	Pract.	Oral	Total
MCA L201 Operating System and Computer Networks (OS and CN Lab)				tworks	25	50	25	100

Pre-requisites: Basic overview of Computer and Computer Networking principles.

Course Educational Objectives (CEO):

CEO 1	To study the various user level and administrator level commands in operating
	system.
CEO 2	To learn shell script and AWK programming.
CEO 3	To make the learner aware of the practical issues and various networking devices
	with their interconnections and configurations.
CEO 4	To equip the learner with a hands-on experience of designing various networking
	applications.

Course Outcomes: At the end of the course, the students will be able to :

MCAL201.1	Apply various operating system commands.
MCAL201.2	To write a shell script and awk programming.
MCAL201.3	Design network for any business requirement.

Syllabus:

Sr.No.	Session	Contents	Hrs
1	Operating	Installation of Operating System with configuration, Disk	4
	System Basics	fragmentation & partitioning, Linux introduction and file	
		system - Basic Features, Advantages, Installation	
		requirements, Basic Architecture of Unix/Linux system,	
		Kernel, Shell, System administration Commands	

Г			1
2	Basic OS	Basic commands, Commands for files and directories cd, ls,	8
	Commands	cp, md, rm, mkdir, rmdir, more, less, Creating and viewing	
		files using 'cat', File comparisons, View files. Essential Linux	
		commands. Understanding shells, Processes in Linux-process	
		fundamentals, connecting processes with pipes, Redirecting	
		input output, manual help, Background processing, managing	
		multiple processes, changing process priority, scheduling of	
		processes at command, batch commands, kill, ps, who, sleep,	
		Printing commands, find, wc, Cal, banner, touch, file, dd,	
		Mathematical commands- bc, expr, factor, units. vi, vim editor	
3	Filter	Filter related commands-sort, grep, sed, head, tail, cut, paste,	8
	Commands	uniq	
		Disk commands-disk related commands, checking disk free	
		spaces	
4	Shell	Shell programming :- Shell programming, Basic of shell	8
	Programming	programming, Various types of shell, shell programming in	
		bash, conditional and looping statements, case statements,	
		parameter passing and arguments, Shell variables, shell	
		keywords, Creating Shell programs for automate system tasks	
		and report printing, use of grep in shell	
5	Advanced	Advanced Shell scripting-basic script functions, returning a	6
3			U
	Shell Scripting	value, using variables in functions, array and variable	
		functions, function recursion, creating text menus	
6	Awk	Study of gcc & basic Awk Programming-variables,	8
	programming	expressions, built in variables, printf, storing in a file using -f	
		option, comparison operator, BEGIN and END sections	
		Awk Programming-arrays, functions, if statement, looping	
7	OS Security	Securing Linux on a network-managing network services,	4
	os security	controlling access to networks with nmap, implementing	_
		firewalls	
8	Introduction to	Study of Packet Tracer software interface, Basic Configuration	4
0		of console, Router & Switches, Assigning IP v4 & IP v6	-
	packet tracer		
	75	addresses to the interfaces of the routers, Subnetting /notation	-
9	Routing Techniques	Configure Static and default routing, RIPv2, EIGRP, OSPF	4
10	Dynamic	Configuration of DCHP, Access List Configuration,	6
	configuration	Configuration of NAT, Static, Dynamic and PAT	
	8	Configuration of 1711, State, Dynamic and 1711	
11	Authentication	Configuration of PPPoE (PAP, CHAP), Configure VLANs on	4
	and VLAN	the router, InterVLAN, Router on stick, multilayer VLAN,	
	una v Em		
		Spanning tree.	
14	Network	Configure Telnet, DNS, HTTP, SMTP, FTP Servers, SNMP	4
	Protocol		
15	Mini Duciest	A Mini – Project based on OS and CN using an integrated	10
	Mini Project	approach.(Maximum Two students in a Group)	10

Reference Books:-

- 1. Unix Concepts & Applications, Sumitabha Das, Fourth Edition, McGraw Hill Education.
- 2. Unix Shell Programming Yashwant Kanetkar, BPB Publications.
- 3.Linux Bible, Christopher Negus, Ninth Edition, Wiley Publications
- 4.Linux Command Line and Shell Scripting Bible, Third Edition, Richard Blum and Christine Bresnahan, Wiley Publications
- 5. Linux Programming A Beginner's Guide Richard Petersen, Tata McGraw Hill Education 6.Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide, Wendell Odom, CISCO Press
- 7. CCNA Routing and Switching ICND2 200-101 Official Cert Guide, Wendell Odom, CISCO Press.

Web Resources:

1) https://learningnetwork.cisco.com

Subject Code	Subject Name	Teaching Scheme (Contact Hours per Week)			Credits Assigned			
	_ ,,,,	Theor	Practica	Tutoria	Theor	Practica	Tutoria	Tota
		y	l	l	y	l	l	1
	Lab-II: Data		06			03		03
	Structure(D							
	S) & Web							
MCAL20	Application							
2	Development							
	using Open							
	Source Tools							
	Lab							
	Examination Scheme							
	E	nd Semes	ster Exam	Once in a	Semeste	r]		
Laboratory Name					Term	Practica	Oral	Tota
				Work	l		l	
MCAL202: Lab-II: Data Structure (DS) & Web				25	50	25	100	
Application Development using Open Source Tools								
Lab								

Pre-requisites: Basic understanding of fundamentals of any programming language and web technology

Course Educational Objectives (CEO):

CEO 1	To study various linear and non-linear data structures.
CEO 2	To provide knowledge for developing web applications using AJAX framework and open source tools.
CEO 3	To conceptualize effective storage mechanism for data and accessing it through web applications.

Course Outcomes: At the end of the course student will be able to

MCAL202.1	Effectively select the data structure model to be used for the real world problem.
MCAL202.2	Develop web based applications using AJAX framework and open source tools.
MCAL202.3	Build web application with effective storage mechanism for data.

Syllabus

Sr.	Session	Detailed Contents	Hours
No.			
1.	Sorting	Bubble Sort, Insertion Sort, Selection Sort, Shell Sort, Radix Sort	04
2.	Searching	Linear Search,Binary search	02
3.	Stacks	Array implementation, Linked List implementation, Evaluation of postfix expression	04

4. Queue		Simple Queue, Linked List implementation of ordinary queue,	08
		Linked List implementation of circular queue, BFS, Linked List implementation of priority queue, Double ended queue	
5.	Linked lists	Singly Linked Lists: Insert, Display, Delete, Search, Count,	08
		Reverse	
		Circular Linked List: Insert, Display, Delete, Search, Count,	
		Reverse	
		Doubly Linked Lists: Insert, Display, Delete, Search, Count,	
		Reverse	
6.	Binary	Insert, Recursive traversal: preorder, postorder, inorder, Search	08
	search trees	Largest Node, Smallest Node, Count number of nodes	
7.	Heap	MinHeap: reheapUp, reheapDown, Delete,	04
		MaxHeap: reheapUp, reheapDown, Delete,	
		HeapSort	
8.	Hashing	Methods for Hashing:	04
		Direct, Subtraction. Modulo Division, Digit Extraction, Fold	
		shift, Fold Boundary, Methods for Collision Resolution, Linear	
		Probe	
9.	Graphs	Represent a graph using the Adjacency Matrix, Find the	04
	.	shortest path in a graph using Warshall's Algorithm, Find the	
		minimum spanning tree (using any method Kruskal's	
		Algorithm or Prim's Algorithm)	
10.	AJAX	Making a Server Request, Loading HTML scriptlets from	04
10.	Framework	server, AJAX events, Making an AJAX Style File Upload.	04
11.	JavaScript	Client side scripting with JavaScript, variables, functions,	06
	1	conditions, Pop up boxes, Working with string, Numbers and	
		arrays, Event handling in JavaScript, Working with forms	
		elements, Validating form fields, Introduction to DOM	
12.	Web	Bootstrap - Introduction to Bootstrap, Bootstrap Grid System,	06
	Application	Bootstrap Grid System - Advanced, Creating Layouts with	
	Development	Bootstrap, Bootstrap CSS - Understanding the CSS, CSS	
	using	Customization / Skins, Responsive Web design with Bootstrap,	
	Bootstrap	Single Page Responsive site with Bootstrap, Bootstrap Plugins, Bootstrap Layout Components	
13.	Web	Joomla - Joomla fundamentals, Understanding the concept of	06
10.	Application	Joomla Positions, Changing the layout structure by changing	
	Development		
	using	Customizing Joomla Template, Building Custom Joomla	
	Joomla	Template, Linking CSS, Linking Javascript, Creating Custom	
		Form, Changing the Form appearance using CSS	
14.	Mini Project	A Mini – Project based on DS and WAD using an integrated	10
		approach.(Maximum Two students in a Group)	

Reference Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to ALGORITHMS", PHI, India Second Edition.
- 2. Richard F Gilberg Behrouz A Forouzan , "Data Structure A Pseudocode Approach with C".
- 3. Shaum's Outlines Data Structure Seymour Lipschutz TMH
- 4. HTML 5, Black Book, dreamtech Press
- 5. Learning PHP, MySQL, JavaScript, CSS and HTML 5, Robin Nixon, O'Reilly publication
- 6. Developing Web Applications in PHP and AJAX, Harwani, McGrawHill
- 7. Developing Web Applications, Ralph Moseley and M. T. Savaliya, Wiley-India
- 8. Extending Bootstrap Christoffer Niska, Packt Publishing
- 9. Bootstrap-Jake Spurlock O'Reilly publication
- 10. Joomla Bible, 2nd Edition, Ric Shreves, Wiley-India
- 11. The Official Joomla! Book, 2nd Edition, (Joomla! Press), by <u>Jennifer Marriott</u>, <u>Elin Waring</u>