Q. P. Code: 27773 [Total Marks: 80

N	.B.:	 Question No.1 is compulsory. Attempt any three from the remaining five questions. Answers to sub-questions should be grouped together. 	
1.	(a)	Explain any two instruction addressing modes with suitable examples of each.	(05)
	(b)		(05)
	(c)	Discuss the working of an Half adder with its truth table and circuit diagram.	(05)
	(d)	Explain the structure and working of an SRAM.	(05)
2.	(a)	What are Multiplexers and de-multiplexers? Explain its use in logic circuits. Construct a 1:8 demultiplexer using basic logic gates and derive its truth table.	(10)
	(b)	Explain the role of registers in a CPU. Discuss the organisation of registers in a CPU.	(10)
3.	(a)	What is a Control Unit? Explain the basic functions of a Control Unit. Discuss the basic model of a control unit along with its internal organization.	(10)
	(b)	Explain, how are multiple instructions executed by a processor. Discuss the six stage instruction pipelining mechanism with the help of a timing diagram.	(10)
4.	(a)	Discuss the use of a Cache Memory. Explain various Cache mapping techniques.	(10)
	(b)	What are interrupts? Explain methods for handling interrupts.	(10)
5.	(a)	Explain the basic organization of an I/O module with its block diagram. Discuss the Programmed I/O and Interrupt driven techniques for I/O operation.	(10)
50,00 A	THE RESERVE THE PERSON NAMED IN	What is a RAID? Explain various RAID Levels in detail with the help of appropriate diagrams.	(10)
6.		e Short Notes on any four of the following: a) Flynn's Taxonomy b) R-S Flip Flop	(20)
10	300	e) Bus arbitration methods	

(d) RISC v/s CISC (e) Bus interconnections

(f) NUMA

Note: (1) Question no.1 is compulsory. (2) Attempt Any Three question from Q. 2 to Q. 7. (3) Figures to right indicates marks. (4) Additional information can be considered but justify the same. (5) Write assume data for case study. 1. Write a Short on Following (Any four). (a) Current Trends in IT (b) Social Responsibilities of IT (c) Internet governance (d) Manager's Responsibilities for Information Technology (e) Roles of IT in M-commerce (f) International Business using IT 2. (a) Explain IT design variable for Online Airline Reservation system. 10 (b) Explain risks of a global IT strategy also explain its benefits. 10 3. (a) List and Explain in detail Contents of an Information System Plan. 10 (b) Analyze the statement "key challenge for management is the integration of 10 information technology and the business". (a) Explain stepwise process to manage information Technology internationally. 4. 10 (b) Explain the necessities to acquire technology in a firm. How to check for 10 maturity of technology? 5. (a) Identify and evaluate different option for regulating and managing acquisition 10 for Technology. (b) List the drawbacks of workplace monitoring. How should managers introduce organisational changes that employ technology? 6. (a) Design Role Of Computer in "The Calyx and Corolla website (for managing 10 delivery of flowers online)" considering perspective of all stakeholders. (b) Detine Information Technology. Classify different type of Information 10 System available in modern organization.

COURSE: M.C.A.(CBCGSS) (Choice Based) (Prog-T8621A)

QP Code: 751102

Change in the instruction are

Q.1 is compulsory question

Solve any 3 from Q. 2 to Q 6

Query Update time: 23/12/2016 12:05 PM

M. C.A. Sem-I (Choiex Based)

[Time: 3 Hours]

Q.P. Code :02850

[Marks:80]

	N.B:	 Q.1 is compulsory Attempt Any Three questions from Q.2 to Q.6 Figures to right indicates marks Additional information can be considered but justify the same 	
Q.1	Write Short or	n Following (Any Four)	20
	a. Role C	of Computer in Modern Business	
	b. E- gov	vernance	
	c. Roles	of IT in E-commerce	
	d. Interna	ational Business using IT	
	e. Added	Value of The CIO	
	f. Value	Chain	
			10
Q.2	a) Sumn	narize key management issues for Information Technology Management	10
	b) Expla	in stepwise process to manage Information Technology internationally.	10
			10
Q.3	a) Identi	fy and evaluate different option for regulating and managing acquisition.	
	47	vze the statement "Key challenge for management is the integration of information	16
	techn	ology and the business	
			10
Q.4		ain benefits of a global IT strategy. Also associated risk	
	b) Diffe	rentiate between major types of international business strategies.	10
3			10
Q.5		and Explain in detail Contents of an Information System Plan	10
	b) Desc	ribe different perspectives of Information system.	10
1 2 2 T		To be to the E Commerce and Ma	10
Q.6	a) Desc	ribe and Compare the role of Information Technology in E-Commerce and M-	10
		imerce	10
	1 6 6 NAT (5)	lain the necessities in acquire technology in a firm. Write down steps to check for nrity of technology.	
33.8			

Please check whether you have got the right question paper.

MCA (CBEGS)-I Object oriented Programming Choice - Based Q.P. Code: 750702

(3 Hours)

		[Total marks: 80]	
N.	B.:	1) Question No. 1 is compulsory.	
=All	- She	2) Attempt any three from remaining five questions.	
1.		What are Programming Paradigms? Explain Procedure Oriented and Object Oriented Programming Paradigms in detail. What is Dynamic Memory Allocation? Design a Class DynamicArray with data[](int) and size(int) as data members. Add a Constructor taking size as a parameter and allocate memory for the array Dynamically. Add Methods to store integer elements in the array and print the elements of the array.	100
2.	(a)	Design a Class Counter with Count(int) data member. Overload ++ operator for pre-increment	10
	(b)	and post-increment of integer Count Variable. Differentiate between 1. C and C++ 2. Pass By Value and Pass by Reference	10
		2. Tass by value and tass by Reference	
3,	(a)	What is use of Constructor and Destructor? Explain different types of constructors with suitable example.	1(
	(b)	What is Inheritance? Explain Public, Private and Protected Inheritance with a suitable example of each.	10
4.	(a)	What is Template? Explain the concept of Function Template. Write a template function for	10
	(b)	addition of its arguments. Instantiate it for characters, integers and floats. Explain Exception handling mechanism of C++. Write a program to handel DivisionByZero exception.	10
5.	(a)	What is polymorphism? Explain with example how polymorphism can be achieved at run-time. Add a note on Virtual destructors.	10
	(b)	What are Different File Opening Modes? Declare a person class-with age(int) and name(stirng). Write a program to store and access the object of person class into and from binary file.	10
6.	Wr	ite short notes on (any four):	
	a)	Uses of Explicit and Mutable Keywords	20
	b)	Static data members and functions	
	c)	Bitwise Operators in C++	
	d)	Namespaces in C++	
	e)	Types of Pointers	

MCA (CBEGS)-I Object oriented Programming Choice - Based Q.P. Code: 750702

(3 Hours)

		[Total marks: 80]	
N.	B.:	1) Question No. 1 is compulsory.	
=All	- She	2) Attempt any three from remaining five questions.	
1.		What are Programming Paradigms? Explain Procedure Oriented and Object Oriented Programming Paradigms in detail. What is Dynamic Memory Allocation? Design a Class DynamicArray with data[](int) and size(int) as data members. Add a Constructor taking size as a parameter and allocate memory for the array Dynamically. Add Methods to store integer elements in the array and print the elements of the array.	100
2.	(a)	Design a Class Counter with Count(int) data member. Overload ++ operator for pre-increment	10
	(b)	and post-increment of integer Count Variable. Differentiate between 1. C and C++ 2. Pass By Value and Pass by Reference	10
		2. Tass by value and tass by Reference	
3,	(a)	What is use of Constructor and Destructor? Explain different types of constructors with suitable example.	1(
	(b)	What is Inheritance? Explain Public, Private and Protected Inheritance with a suitable example of each.	10
4.	(a)	What is Template? Explain the concept of Function Template. Write a template function for	10
	(b)	addition of its arguments. Instantiate it for characters, integers and floats. Explain Exception handling mechanism of C++. Write a program to handel DivisionByZero exception.	10
5.	(a)	What is polymorphism? Explain with example how polymorphism can be achieved at run-time. Add a note on Virtual destructors.	10
	(b)	What are Different File Opening Modes? Declare a person class-with age(int) and name(stirng). Write a program to store and access the object of person class into and from binary file.	10
6.	Wr	ite short notes on (any four):	
	a)	Uses of Explicit and Mutable Keywords	20
	b)	Static data members and functions	
	c)	Bitwise Operators in C++	
	d)	Namespaces in C++	
	e)	Types of Pointers	

MCA (CBEGS)-I Object oriented Programming Choice - Based Q.P. Code: 750702

(3 Hours)

		[Total marks: 80]	
N.	B.:	1) Question No. 1 is compulsory.	
=All	- She	2) Attempt any three from remaining five questions.	
1.		What are Programming Paradigms? Explain Procedure Oriented and Object Oriented Programming Paradigms in detail. What is Dynamic Memory Allocation? Design a Class DynamicArray with data[](int) and size(int) as data members. Add a Constructor taking size as a parameter and allocate memory for the array Dynamically. Add Methods to store integer elements in the array and print the elements of the array.	100
2.	(a)	Design a Class Counter with Count(int) data member. Overload ++ operator for pre-increment	10
	(b)	and post-increment of integer Count Variable. Differentiate between 1. C and C++ 2. Pass By Value and Pass by Reference	10
		2. Tass by value and tass by Reference	
3,	(a)	What is use of Constructor and Destructor? Explain different types of constructors with suitable example.	1(
	(b)	What is Inheritance? Explain Public, Private and Protected Inheritance with a suitable example of each.	10
4.	(a)	What is Template? Explain the concept of Function Template. Write a template function for	10
	(b)	addition of its arguments. Instantiate it for characters, integers and floats. Explain Exception handling mechanism of C++. Write a program to handel DivisionByZero exception.	10
5.	(a)	What is polymorphism? Explain with example how polymorphism can be achieved at run-time. Add a note on Virtual destructors.	10
	(b)	What are Different File Opening Modes? Declare a person class-with age(int) and name(stirng). Write a program to store and access the object of person class into and from binary file.	10
6.	Wr	ite short notes on (any four):	
	a)	Uses of Explicit and Mutable Keywords	20
	b)	Static data members and functions	
	c)	Bitwise Operators in C++	
	d)	Namespaces in C++	
	e)	Types of Pointers	

MCA | sem I | a Broice board)

1. Question.No.1 is Compulsory.

Q.P. Code: 02555

[Time: Three Hours]

Please check whether you have got the right question paper.

[Marks:80]

2. Attempt any three from reaming five questions. Q.1 a) What is a Class? How will you create a class in C++? What are different elements that can be added to a Class? 10 Explain with a suitable program. b) What is inline function? What are restrictions on use of Inline functions? Write a program to implement the 10 concept of inline function. Q.2 a) What is Operator Overloading? Explain how you will overload a binary operator with a suitable programming 10 example. b) What is friend function? What is need of friend function? Write a program to illustrate the use of friend 10 function. Q.3 a) What is inheritance? What type of ambiguity occurs in multiple inheritances and how is it resolved? 10 b) Explain the differences between: 10 1) Static and Constant 2) C and C++ Q.4 a) What is Template? Explain the concept of Class Template. Write a program to implement the use of class 10 template.

b) What is polymorphism? Explain with example how polymorphism can be achieved at run-time.

b) What is Exception Handling? Write a program to create and handle user defined exception.

Q.5 a) Declare a student class-with roll no, name and address. Write a program to store and access the object of

Write short notes on (any four) a) New and delete operators

student class into and from binary file.

N.B:

20

10

10

10

b) This pointer

c) Namespaces in C++

d) Manipulators

e) Loops in C++

MCA Sem I. Choice Based. 546- Statistics & Poobability.

Nov/ Dec-2016

Q.P. Code: 751002

(3 Hours)

Total Marks: 80

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any THREE out of remaining five questions.
 - Assume any necessary data but justify the same.
 - Figure to the right indicates marks.
 - Use of scientific calculator is allowed.

Q.1	a)	calculation tw	vo items	eviation of 100 are wrongly tak standard deviat	en as 30 an			AND DESCRIPTION OF STREET	[5]				
3.4	b)	In the frequency distribution of 100 families given below, the number of families corresponding to expenditure groups 20-40 and 60-80 are missing. The median is known to be 50. Find the missing frequencies.											
			Expen	diture (in Rs.)	No. of	Families							
				0-20	4/	14							
				20-40	AV	?							
			40-60			27	,						
				60-80		?							
		80-100											
	c)	probability that the number on the tag is either divisible by 3 or is a perfect square.											
	d	square.					by 3 or is a	perfect	(e)				
	d)	square. If X is a discre i) E	ete rando (aX + b)				by 3 or is a	perfect	[5]				
Q.2	d)	square. If X is a discre i) E(ii) V If X and Y are f(x,y) = 2 = 0 i) Fin ii) Fin	two rand (aX + b) (aX + B) two rand ; 0 < ; oth and the m	m variable, the	aving joint p	orobability	y density fund						
Q.2		square. If X is a discretion E(two rand (aX + b) (aX + B) two rand ; 0 < ; oth and the mand conditate	m variable, then = a E(X) + b = a ² V(X) dom variables h x < 1 , 0 < y < x erwise arginal density futional density for	aving joint point	X and Y.	y density fund nd X given Y.	ction	[10]				
Q.2	a)	square. If X is a discretion E(two rand (aX + b) (aX + B) two rand ; 0 < ; oth and the mand conditate	m variable, then = a E(X) + b = a ² V(X) dom variables h x < 1 , 0 < y < x erwise arginal density fundependence of	aving joint prove that	X and Y.	y density fund nd X given Y.	ction					

	c)	Use the St	em an	d Leaf	fplot	to ans	swer f	ollowi	ng ques	tions.					[5]
				Γ	Stem	1	T	Leaf						(1
				Ī	(5	1 1	4 6	7 8					-	
	1			Ī	7	7	-	5 7							4
				Ī	8	3	1 3	5 6	677	8 9		-			
				1	9	9	_		689	-			-		
					1	0	0 0					0			
		i) ii) iii) iv) v)	How i How i What	is the many many is the the dif	stude stude lowe	nts to nts so st sco	core? ook the cored :	e te st? 90?	igh and	low so	ores.)°			
2.3	a)	Ten compe	etitors order.	in a b	eauty	cont	est ar	e ranke	ed by th	nree ju	dges i	n the			[10]
	1	Judge1	1	1	5	4	8	9	6	10	7	3	2	7	
		Judge2	2	4	8	7	6	5	9	10	3	2	1		
		Use rank c	3	6	7	8	1	5	10	9	2	3	4	1	
-	b)	Let X be a				ariab	le wit	h the f	ollowin	g p.d.f		7			[5]
		P(X)		1/		9	1\2		1\24		110	-		- 1	
		Find E(Y) w		/ = (X	-1)2						1\8				
	c)	The letters that the co	of the	nts m	"failu ay occ	ure "a cupy o	only o	anged dd pos	at randition.	dom. Fi	nd th	e prob	ability	'	[5]
the following example: In a bolt factory machines A, B, and C manufacture respectively 25%, 35% and 40% of total. Of their output 5, 4, 2, percent are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machines												manu 2, pero	ent a	re re	[10]
		A, B,C?								ely asso					

	c)	The follow random fr					ution o	f digits	in num	ber ch	osen	at	[5]								
		Digits	0	1	2	3	4	5	6	7	8	9	-								
		Freq.	1026	1107	997	966	1075	933	1107	972	964	853	1								
-		Test whe	ther th	e digit	ts may	be ta	ken to	occur	equall	y freq	uentl	y in the	1								
		directory. level of sig	(Given	the ta	ble valu 6.92)	e of cl	ni_squa	re for	9 degre	es of f	reedo	om at 5%	[10]								
Q.5	a)	company	and rec	cords the	ne dista that the	nce in	miles a	nd deli	very tin	ery time to the nearest available for pick-up as											
		Distance In miles (x)	852	215	1070	550	480	920	1350	325	670	1215									
14		Delivery time in days (Y)	3.5	1	4	2	. 1	3	4.5	1,5	3	5									
		i) ii) iii) iv)	i) Determine lines of Regression Y on X and X on Y ii) Find Karl Pearson's correlation coefficient iii) Estimate the delivery time in days for 1000 miles																		
	b)	Find the quartile deviation for the following data:																			
		Class		0-15	15-30	30-		5-60	60-75	10000		90-105									
		Frequency		8	26	3	0	45	20	1	7	4									
c) The probability that a person stopping at a petrol pump will ask for petrol is 0.8, will ask for water is 0.7 and for both is 0.65. find the probability that the person will ask for: i) either petrol or water ii) neither petrol nor water iii) only petrol												at the	[5]								
Q.6	a)	Draw Box			diagrar 1, 6, 6		he follo	wing d	lata set				[5]								
	b)	Test the o	The same of the sa	The second of the second		AND PROPERTY OF THE PARTY.			The state of the s		ng the	eir usual	[5]								
	c)	A machin average t have an a Test the s 5% level i	hicknes verage significa	ss of 0.0 thickn ince of	025 cm. ess of 0	A ran .024 c	dom sa m. with	mple o a stan	f 10 wa dard de	shers :	was fo	ound to .002 cm.	[5]								
1	d)	A continu	f(x) = k	(2-x),		≤x<2	if						[5]								
	-			there are the con-	C		ise														

COURSE: M.C.A.(CBCGSS) (Choice Based) (Prog-T8621A)

QP Code: 751002

Q 3 (a) TABLE READ AS FOLLOW

Judge 1	1	5	4	8	9	6	10	7	3	2
Judge 2	4	8	7	6	5	9	10	3	2	1
Judge 3	6	7	8	1	5	10	9	2	3	4

Query Update time: 21/12/2016 12:35 PM

MCA Sem I. Choice Based. 546- Statistics & Poobability.

Nov/ Dec-2016

Q.P. Code: 751002

(3 Hours)

Total Marks: 80

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any THREE out of remaining five questions.
 - Assume any necessary data but justify the same.
 - Figure to the right indicates marks.
 - Use of scientific calculator is allowed.

Q.1	a)	calculation tw	Mean and standard deviation of 100 items are 40 and 10. If at the time of calculation two items are wrongly taken as 30 and 72 instead of 3 and 27, find the correct mean and standard deviation.											
1.	b)	In the frequency distribution of 100 families given below, the number of families corresponding to expenditure groups 20-40 and 60-80 are missing. The median is known to be 50. Find the missing frequencies.												
			Expen	diture (i	in Rs.)	No. of	Families]					
				0-20		4	14							
				20-40		7	?							
				40-60			27	,						
				60-80	0		?							
				80-100	0		15							
	c)	probability that the number on the tag is either divisible by 3 or is a perfect square.												
	d)	If X is a discrete random variable, then prove that : i) E(aX + b) = a E(X) + b ii) V(aX + B) = a ² V(X)												
Q.2	a)	If X and Y are two random variables having joint probability density function f(x,y) = 2 ; 0 < x < 1 , 0 < y < x = 0 ; otherwise i) Find the marginal density functions of X and Y. Find conditional density function of Y given X and X given Y. Check for independence of X and Y.												
-	b)	Calculate the	Bowley's	s coeffic	ient of sk	ewness fo	or the follo	wing distr	ibution.	[5]				
	b)	Calculate the	Bowley' 05-10	s coeffic	ient of sk	20-25	25-30	wing distr 30-35	ibution. 35-40	[5]				

	c)	Use the St	em an	d Leaf	fplot	to ans	swer f	ollowi	ng ques	tions.					[5]
				Γ	Stem	1	T	Leaf						(1
				Ī	(5	1 1	4 6	7 8					-	
	1			Ī	7	7	-	5 7							4
				Ī	8	3	1 3	5 6	677	8 9		-			
				1	9	9	_		689	-			-		
					1	0	0 0					0			
		i) ii) iii) iv) v)	How i How i What	is the many many is the the dif	stude stude lowe	nts to nts so st sco	core? ook the cored :	e te st? 90?	igh and	low so	ores.)°			
2.3	a)	Ten compe	etitors order.	in a b	eauty	cont	est ar	e ranke	ed by th	nree ju	dges i	n the			[10]
	1	Judge1	1	1	5	4	8	9	6	10	7	3	2	7	
		Judge2	2	4	8	7	6	5	9	10	3	2	1		
		Use rank c	3	6	7	8	1	5	10	9	2	3	4	1	
-	b)	Let X be a				ariab	le wit	h the f	ollowin	g p.d.f		7			[5]
		P(X)		1/		9	1\2		1\24		110	-		- 1	
		Find E(Y) w		/ = (X	-1)2						1\8				
	c)	The letters that the co	of the	nts m	"failu ay occ	ure "a cupy o	only o	anged dd pos	at randition.	dom. Fi	nd th	e prob	ability	'	[5]
the following example: In a bolt factory machines A, B, and C manufacture respectively 25%, 35% and 40% of total. Of their output 5, 4, 2, percent are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machines												manu 2, pero	ent a	re re	[10]
		A, B,C?								ely asso					

	c)	The follow random fr					ution o	f digits	in num	ber ch	osen	at	[5]								
		Digits	0	1	2	3	4	5	6	7	8	9	-								
		Freq.	1026	1107	997	966	1075	933	1107	972	964	853	1								
-		Test whe	ther th	e digit	ts may	be ta	ken to	occur	equall	y freq	uentl	y in the	1								
		directory. level of sig	(Given	the ta	ble valu 6.92)	e of cl	ni_squa	re for	9 degre	es of f	reedo	om at 5%	[10]								
Q.5	a)	company	and rec	cords the	ne dista that the	nce in	miles a	nd deli	very tin	ery time to the nearest available for pick-up as											
		Distance In miles (x)	852	215	1070	550	480	920	1350	325	670	1215									
14		Delivery time in days (Y)	3.5	1	4	2	. 1	3	4.5	1,5	3	5									
		i) ii) iii) iv)	i) Determine lines of Regression Y on X and X on Y ii) Find Karl Pearson's correlation coefficient iii) Estimate the delivery time in days for 1000 miles																		
	b)	Find the quartile deviation for the following data:																			
		Class		0-15	15-30	30-		5-60	60-75	10000		90-105									
		Frequency		8	26	3	0	45	20	1	7	4									
c) The probability that a person stopping at a petrol pump will ask for petrol is 0.8, will ask for water is 0.7 and for both is 0.65. find the probability that the person will ask for: i) either petrol or water ii) neither petrol nor water iii) only petrol												at the	[5]								
Q.6	a)	Draw Box			diagrar 1, 6, 6		he follo	wing d	lata set				[5]								
	b)	Test the o	The same of the sa	The second of the second		AND PROPERTY OF THE PARTY.			The state of the s		ng the	eir usual	[5]								
	c)	A machin average t have an a Test the s 5% level i	hicknes verage significa	ss of 0.0 thickn ince of	025 cm. ess of 0	A ran .024 c	dom sa m. with	mple o a stan	f 10 wa dard de	shers :	was fo	ound to .002 cm.	[5]								
1	d)	A continu	f(x) = k	(2-x),		≤x<2	if						[5]								
	-			there are the con-	C		ise														

COURSE: M.C.A.(CBCGSS) (Choice Based) (Prog-T8621A)

QP Code: 751002

Q 3 (a) TABLE READ AS FOLLOW

Judge 1	1	5	4	8	9	6	10	7	3	2
Judge 2	4	8	7	6	5	9	10	3	2	1
Judge 3	6	7	8	1	5	10	9	2	3	4

Query Update time: 21/12/2016 12:35 PM

[Time: 3 Hours]

[Marks: 80]

05

05

10

05

05

Please check whether you have got the right question paper.

N.B:

- 1. Questions No. 1 is compulsory.
- 2. Attempt any THREE out of remaining five questions.
- 3. Assume any necessary data but justify the same.
- 4. Figure to the right indicates marks.
- Use of scientific calculator is allowed.
- A) The mean and standard deviation of 200 items are found to be 60 and 20. At the time of calculations two items are wrongly taken as 3 and 67 instead of 13 and 17. Find the correct mean and standard deviation.
 - b) In a random arrangement of the letters of the word 'COMMERCE', find the probability that all the vowels come together.
 - c) Find the coefficient of variation for the following data: 12,17,20,16,13,11,18,12,18,13
 - d) Let X be random variable with the following probability distribution. Find $E(2x+1)^2$

V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Λ	43,000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
P(X = x)	2 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
I (A A)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	11-5
	11 12 12 12 12 12 12 12 12 12 12 12 12 1	

2. a) The joint density function of the two dimensional random variable (X, Y) is given by is given by

$$f_{xy}(x, y) = x^3 y^3 / 16$$
, $0 \le x \le 2, 0 \le y \le 2$
 $= 0$, otherwise.

Find the marginal densities of X and Y. Also find the cumulative distribution functions of X and Y.

b) Calculate Modal marks for data given below:

10 1 0000 000	David St.	0-	717.00101	The second secon	1	
Marks S	10-30	30-50	50-70	70-90	90-110	110-130
No. of Students	5246	2103	0 14 9	C 10 0	8	6
11. 23 - Lat. Val. 1. 1. 1. 1.	12 C 20 1	1	2 12 00	11.45	U	0

c) Find the Spearman's Rank correlation:

3 34	EA	1 4 -
J-T	1 34	65
2 60	57	50
2	60	60 57

- 3. a) The regression line of y on x for a certain bivariate data is 5y + 3x = 52 and the regression line of x on y is 2x + y = 30. Find
 - 1. the arithmetic mean of x and y
 - 2. the coefficient of correlation between x and y
 - 3. the most probable value of y when x = 10
 - b) We are given a box containing 5000 IC chips, of which 1000 are manufactured by company X and rest by company Y. 10% of the chips made by company X and 5% of the chips made by company Yare defective. If a randomly chosen chip is found to be defective, find the probability that it comes from company X.
 - c) If X is a random variable and a, b are constants, then prove that

05

V (a X + b) = a² V(x)

Turn Over

- State the Baye's theorem. Three machines A, Band C produce respectively 40%, 10% and 50% 10 of the items in a factory. The % of defective items produced by the machine is respectively 2%, 3% and 4%. An item from the factory is selected at random.
 - 1. Find the probability that the item is defective.
 - 2. If the item is defective, find the probability that the item was produced by machine C
 - b) Test consistency of the following data: N = 60 (AB) = 25 (A) = 51 (B) = 32
 - c) Two hundred randomly selected adults were asked whether TV shows as a whole are primarily of entertaining, educational or a waste of time. The respondents were categorized by gender. Is there a relationship between gender and opinion in the population interest?

 (Critical value of X² = 5.99)

Their responses are given in the table below

Actual frequencies	Street Street Street Spinion Control of Street Stre
Gender	Entertaining Educational Waste of time
Male	30
Female	50 285 285 20 6 6 6 7 5 12 3 6 6 7 9 50

5. a) Calculate Bowley's coefficient of skewness for the following:

Class	30-35	35-40	40-45	45-50	50-55	55-60
Frequency &	353	1000	30	35	158	825

- b) The means of two samples of sizes 50 and 100 respectively are 54.1 and 50.3 and the standard deviation are 8 and 7. Obtain the standard deviation of the sample of size 150 obtained by combing the two samples.
- c) Prove with example that mutual independence does not imply pair wise independence.

6. a) Calculate standard deviation for the following data:

270	20-30	30-40	40-50	50-60	60-70	70-80	80-90
327	233/2	56100	132	153	140	51	2

- b) Show that whether A and B are independent, positively associated or negatively associated. (AB) = 128, (αB) = 84, $(A\beta)$ = 24 and $(\alpha \beta)$ = 72
- c) Two dice are rolled. Let X denote the random variable which counts the total number of points on the upturned faces. Construct a table giving the non-zero values of the probability mass function.
- d) The mean of marks in statistics of 100 students in a class was 72. The mean of marks of boys was 75, while their number was 70. Find the mean of girls in the class.

05

05

05

MCA-Sem-I Choice Based Q.P. Code:04436

[Time: 3 Hours]

[Marks: 80]

Please check whether you have got the right question paper.

N.B:

- 1. Question No. 1 is compulsory
- 2. Attempt any three question of remaining
- 3. Assume any necessary data but justify the same
- 4. Figure on the right indicate the full marks
- 5. Use of scientific calculator is allowed

Q.1 a) Find the median wage of the following distribution

0

05

Roll no.	0-20	20-40	40-60	60-80	80-100
Marks	5	8	S 15 8 6 2 2 2	16 8 888	6 00

b) The age of people in an old age home is:
57 61 57 57 58 57 61 54 68 51 49 64 50 48 65 52 56 46 54 49 50 47 55 54 42 51
56 55 51 54 51 60 62 43 55 56 61 52 69 64
Make a stem and leaf plot of the data.

- i) How many people are 51 years old?
- ii) What age is the youngest and the oldest person?
- iii) How many people are 40-49 years old?
- c) What is the probability that four A's come consecutively in the arrangement of the letters in word 05 "MAHARASHTRA"?
- d) An urn contains 7 white and 3 red balls. Two balls are drawn together at random from the urn. OS Compute the probability that neither of them is white. Find also the probability of getting one white and one red. Hence compute the expected number of white balls drawn.
- Q.2 a) Two dice are rolled. Let X denotes the random variable which counts the total number of points on the upturned faces. Construct a table giving the non-zero values of the probability mass function.
 - b) If a continuous random variable has pdf

05

- $f(x) = k(2-x), 0 \le x < 2$
 - $= kx (x-2), 2 \le x < 3$
 - = 0 otherwise

Find k.

c) Calculate mean deviation from mean for the following :

05

Experience in months	0	1	2	3	4	5	6	7	8	9
No. of	15	46	91	162	110	95	82	26	13	2
members	10 St.	25	3							

d) Find the coefficient of variation of frequency distribution given that its men is 120, mode is 123 and Karl Person's coefficient of skewness is - 0.3.

T8631 / T0238 STATISTICS AND PROBABILITY

Q.P. Code :04436

- a) Box A contains 5 red marbles and 3 blue marbles and Box B contains 3 red and 2 blue. A marble is Q.3 drawn at random from each box
- 05

- · Find the probability that both marbles are red
- · Find the probability that one is red and other is blue

- b) Let variable X have the distribution P(X=0) = P(X=2) = p, P(X=1) = 1 2p for $0 \le p \le \frac{\pi}{2}$ For what p is the Var(X) a maximum?

Find the regression line of v on x for the following data

X	1	2	3	4 6 5 6 5 8 3
Υ	2	5	3	8 2 2 2 2 2

05

- 28 d) A: 35 48 12 31 23 Y: 30 46 33
 - Compute their ranks in the two subjects and the Spearman Rank correlation coefficient

Two discrete random variables X and Y have joint p.m.f. given by the following table Q.4

05

X/Y	180	2	3
1	1/12	1/6	1/12
2	1/6	1/12	1/4
3	1/12	1/12	0

Compute the probability of each of the following events

1) $X \le 1.5$ 2) X is odd 3) Y is odd given that X is odd.

b) Let X be random variable with following probability distribution.

3×33	VS 3 80	6	91	70.900
P (X=x)	1/6	1/2	16	1/3

Find E(2x+1)2

c) Find the mode of the following distribution

05

Size (x)	1	2	3	4	5	6	7	8	9	10	11	12
Frequency (f)	3	8	15	23 -	35	40	32	28	20	45	6	6

- d) The first of the two samples has 100 items with mean 25 and S.D 3. If the whole group has 250 items with mean 15.6 and S.D (13.44) " find the S.D. of the second group.
- a) For a group of 200 candidates the mean and standard deviation of scores were found to be 40 and 15 05 respectively. Later on it was discovered that the scores 43 and 35 were misread as 34 and 53 respectively. Find the corrected mean and standard deviation of the corrected figures.
 - b) What is the chance that a leap year selected at random will contain 53 Sundays?

05

05

Calculate Bowley's coefficient of skewness for the following

Marks 0-10 10-20	20-30	30-40	40-50
Student 5 5 7	20	12	6

CA-Sem = T8631/T0238 STATISTICS AND PROBABILITY

Q.P. Code :04436

d) For 8 observations the following results were calculated $\Sigma x = 59$, $\Sigma y = 40$, $\Sigma x^2 = 524$, $\Sigma y^2 = 256$, $\Sigma xy = 344$ find the regression equations y on x.

05

Q.6 a) The joint density function of the two dimensional random variable (X,Y) is given by

05

$$f_{xy}(x,y) = \frac{x^3 y^3}{16}, \quad 0 \le x \le 2, \quad 0 \le y \le 2$$

= 0 otherwise

Find the marginal densities of X and Y.

Also find the cumulative distribution functions of X and Y

05

b) Prove that E(aX+b)=aE(X)+b and V(aX+b) =a2 V(X)

05

c) Give N=2500, (A)=420, (AB)=85, and (B)=670. Find the missing values:

05

- d) The mean weekly sales of soap bars in department stores was 146.3 bars per store. After an advertising campaign the mean weekly sales in 22 stores for a typical week increases to 153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful?

 (Given: The table value of t for 21 d.f. at 5% significant level is 1.72)
- Q.7 a) Prove that with example that three events may be pair wise independent but need not to be mutually 05 independent.
 - b) There are three boxes. Box I contains 1 white 2 red and 3 black balls. Box II contains 2 white 3 red and 05 1 black balls Box III contains 3 white 1 red and 2 black balls. A box is chosen at random. If the balls drawn are first red and second white, what is the probability that they come from Box II?
 - c) Test the consistency of the following data with the symbols having their usual meaning N=1000. (A) =600, (B) =500, (AB)=50

05

05

d) The observed and expected frequencies in tossing a die 120 times are given below. Test the hypothesis that the die is fair. (Use level of significance=0.05, and critical value for 5 d.f. is 11.1)

Die face	88188	200	03335	4	5	6
Observed	S 25 8 3	17	15	23	24	16
frequencies	16 9 8 G	42 N 2 2 2	20025			

MCA-Sem-I Choice Based Q.P. Code:04436

[Time: 3 Hours]

[Marks: 80]

Please check whether you have got the right question paper.

N.B:

- 1. Question No. 1 is compulsory
- 2. Attempt any three question of remaining
- 3. Assume any necessary data but justify the same
- 4. Figure on the right indicate the full marks
- 5. Use of scientific calculator is allowed

Q.1 a) Find the median wage of the following distribution

0

05

Roll no.	0-20	20-40	40-60	60-80	80-100
Marks	5	8	S 15 8 6 2 2 2	16 8 888	6 0 0

b) The age of people in an old age home is:
57 61 57 57 58 57 61 54 68 51 49 64 50 48 65 52 56 46 54 49 50 47 55 54 42 51
56 55 51 54 51 60 62 43 55 56 61 52 69 64
Make a stem and leaf plot of the data.

- i) How many people are 51 years old?
- ii) What age is the youngest and the oldest person?
- iii) How many people are 40-49 years old?
- c) What is the probability that four A's come consecutively in the arrangement of the letters in word 05 "MAHARASHTRA"?
- d) An urn contains 7 white and 3 red balls. Two balls are drawn together at random from the urn. OS Compute the probability that neither of them is white. Find also the probability of getting one white and one red. Hence compute the expected number of white balls drawn.
- Q.2 a) Two dice are rolled. Let X denotes the random variable which counts the total number of points on the upturned faces. Construct a table giving the non-zero values of the probability mass function.
 - b) If a continuous random variable has pdf

05

- $f(x) = k(2-x), 0 \le x < 2$
 - $= kx (x-2), 2 \le x < 3$
 - = 0 otherwise

Find k.

c) Calculate mean deviation from mean for the following :

05

Experience in months	0		2	3	4	5	6	7	8	9
No. of	15	46	91	162	110	95	82	26	13	2
members	10 St.	18.	6							

d) Find the coefficient of variation of frequency distribution given that its men is 120, mode is 123 and Karl Person's coefficient of skewness is - 0.3.

Q.P. Code :04436

- a) Box A contains 5 red marbles and 3 blue marbles and Box B contains 3 red and 2 blue. A marble is Q.3 drawn at random from each box
 - 05

- · Find the probability that both marbles are red
- · Find the probability that one is red and other is blue

- b) Let variable X have the distribution P(X=0) = P(X=2) = p, P(X=1) = 1 2p for $0 \le p \le \frac{\pi}{2}$ For what p is the Var(X) a maximum?

Find the regression line of v on x for the following data

X	1	2	3	4 6 5 6 5 8 3
Υ	2	5	3	8000000

05

- 28 d) A: 35 48 12 31 23 Y: 30 46 33
 - Compute their ranks in the two subjects and the Spearman Rank correlation coefficient
- Two discrete random variables X and Y have joint p.m.f. given by the following table Q.4

05

F	X/Y	188	2	3
	1	1/12	1/6	1/12
	2	1/6	1/12	1/4
1	3	1/12	1/12	0

Compute the probability of each of the following events

1) $X \le 1.5$ 2) X is odd 3) Y is odd given that X is odd.

b) Let X be random variable with following probability distribution.

825	3.3	6	2470	9 8
P (X=x)	1/6	1/2	160	1/3

Find E(2x+1)2

	Size (x)		-	1		5	6	7	8	9	10	11	12
1.450	Frequency (f)	3	8	15	23 -	35	40	32	28	20	45	6	6

05

d) The first of the two samples has 100 items with mean 25 and S.D 3. If the whole group has 250 items with mean 15.6 and S.D (13.44) " find the S.D. of the second group.

- a) For a group of 200 candidates the mean and standard deviation of scores were found to be 40 and 15 05 respectively. Later on it was discovered that the scores 43 and 35 were misread as 34 and 53 respectively. Find the corrected mean and standard deviation of the corrected figures.
 - b) What is the chance that a leap year selected at random will contain 53 Sundays?

05

05

c) Calculate Bowley's coefficient of skewness for the following

	The second secon		And the second s			_
3	Marks	0-10 10-20	20-30	30-40	40-50	
701	the state of the s	\$ 3007	20	12	6	

CA-Sem T T8631/T0238 STATISTICS AND PROBABILITY

MCA-sem I T8631/T0238 Choice Based 23/07/17

Q.P. Code :04436

d) For 8 observations the following results were calculated $\Sigma x = 59$, $\Sigma y = 40$, $\Sigma x^2 = 524$, $\Sigma y^2 = 256$, $\Sigma xy = 344$ find the regression equations y on x.

05

Q.6 a) The joint density function of the two dimensional random variable (X,Y) is given by

AF

 $f_{xy}(x,y) = \frac{x^3 y^3}{16}, \quad 0 \le x \le 2, \quad 0 \le y \le 2$ = 0 otherwise 05

Find the marginal densities of X and Y.

Also find the cumulative distribution functions of X and Y

05

b) Prove that E(aX+b)=aE(X)+b and V(aX+b) =a2 V(X)

05

c) Give N=2500, (A)=420, (AB)=85, and (B)=670. Find the missing values:

05

- d) The mean weekly sales of soap bars in department stores was 146.3 bars per store. After an advertising campaign the mean weekly sales in 22 stores for a typical week increases to 153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful?

 (Given: The table value of t for 21 d.f. at 5% significant level is 1.72)
- Q.7 a) Prove that with example that three events may be pair wise independent but need not to be mutually 05 independent.
 - b) There are three boxes. Box I contains 1 white 2 red and 3 black balls. Box II contains 2 white 3 red and 05 1 black balls Box III contains 3 white 1 red and 2 black balls. A box is chosen at random. If the balls drawn are first red and second white, what is the probability that they come from Box II?
 - c) Test the consistency of the following data with the symbols having their usual meaning N=1000. (A) =600, (B) =500, (AB)=50

05

05

d) The observed and expected frequencies in tossing a die 120 times are given below. Test the hypothesis that the die is fair. (Use level of significance=0.05, and critical value for 5 d.f. is 11.1)

Die face	S 5 1 5	0568	200	83330	4	5	6
Observed	\$ 25	2 3 1	7 - 8	15	23	24	16
frequencies	15 2 2 3	WAY N	2.72	N 0 2 3 5			